If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+40x=48
We move all terms to the left:
8x^2+40x-(48)=0
a = 8; b = 40; c = -48;
Δ = b2-4ac
Δ = 402-4·8·(-48)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-56}{2*8}=\frac{-96}{16} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+56}{2*8}=\frac{16}{16} =1 $
| 9/10*y=-36 | | 2n-5=11* | | 6x+2+x=9x-4x | | 2x^2+11x-39=0 | | 1/8d=7/4 | | 6x-25=2(3x+23) | | 3(x-4)=-4(2x-7) | | z/9− –30=38 | | 4x^2-20x-75=180 | | 8(2w−2)=7(3w+2) | | d^2-36=13 | | X^=5+10x | | (4x+7)+(5x-8)=53 | | 4|3w+1|−7=17 | | 2(p+5)=-4 | | 8y−7=14+6y | | F(n)=2n+7/4n-9 | | (b+45)=540 | | 5(x+2)-3=3x=8x+7 | | 3/5r=-9 | | 4(x+4)-15=4(x-5) | | b^2=747 | | 6(x-2)+4(x-1)=10 | | (-8-3x)/2=11 | | w(2w+5)=28 | | 19-2x+6x-1=63 | | 9y+4=1/5 | | 73+6x=56+4x= | | 5x+6+6=3x | | x/9+8=44 | | (1073+1108m)=1000 | | -28=-4-4x |